
Project Final Report

EECS 488 - Embedded Systems Design

Case Western Reserve University

Steven Chen Hao Nyeo (cxn152)

May 9, 2019

Contents

1 Abstract 2

2 State of the Art 2
2.1 Closed-circuit Television (CCTV) 2
2.2 Car Dash Camera . 2
2.3 Monitoring Cameras for Pets and Infants 2

3 Motivation 3

4 Program Design and Features 4
4.1 The Mat Class . 4
4.2 OpenCV VideoCapture . 5
4.3 Finite-state Machine . 5
4.4 Frame Differencing . 8
4.5 Human Detection . 10
4.6 Timing . 10
4.7 Sending Email Notification . 12

5 Current Product 12
5.1 Installation . 12
5.2 Display Interface . 13

6 Results and Analysis 14
6.1 Performance . 14
6.2 Cost Analysis . 15
6.3 Engineering Cost . 16
6.4 Varying Cost . 16

1

7 Future Prospects 16
7.1 Improvements . 16
7.2 Viable Features . 17

8 Summary 18

9 References 18

1 Abstract

The purpose of this final document is to elaborate on the surveillance system de-
veloped during the Embedded Systems Design (EECS 488) class project: A Low
Cost System for Video Surveillance. The document will include the approaches
of tackling the implementation of surveillance systems with comparatively low
installing and engineering cost. The sections will include the motivation and
significance of the project, available products on the current market, personal
approach of implementation and its methods, and also the outcomes of the
project.

2 State of the Art

2.1 Closed-circuit Television (CCTV)

The Closed-circuit Television (CCTV), shown in Figure 1, is a product on the
market that satisfy the video surveillance functionalities and is widely imple-
mented on both public infrastructure and private properties for security and
safety purposes. Depending on the quality, features, and the number of cam-
eras during the installationhe cost of a CCTV system typically varies around
600 USD to 2,000 USD, and averages at around 1,339 USD [1].

Similar products on the market that would utilize surveillance cameras,
shown in Figure 2, include the following:

2.2 Car Dash Camera

The car dash camera is a surveillance product on the market that is used to
monitor and record driving conditions and possible incidents on the road. The
system typically consists of a sole camera that focuses on the front end of the
car to monitor upcoming traffic. The cost of a typical car dash cameras are
around 70 USD to 300 USD [2].

2.3 Monitoring Cameras for Pets and Infants

The pet and infant cameras are built specifically for monitoring the actions pets
and infants in households when direct interaction with pets and/or infants is

2

Figure 1: Closed-circuit Television (CCTV) [4]

not accessible. Typical costs for the pet and infant cameras are approximately
30 USD to 300 USD [3].

3 Motivation

The Raspberry Pi circuit board is a multi-purpose single-board computer that
is often used in hardware and software projects requiring signal controlling and
processing. Because of its low cost at around 35 USD and its ease of programma-
bility [7], the Raspberry Pi is widely acknowledged as an inexpensive alternative
for chips built specifically for certain signal processing tasks. In the case of this
surveillance system project, the Raspberry Pi acts as the main embedded device
that executes the surveillance functionalities, including movement and human
detection.

After the evaluation of the installation cost of a readily available surveillance
system on the market, it is seen that the cost of surveillance system could
possibly be lowered by using the Raspberry Pi as the customized medium of
communication between devices of a surveillance system.

The goal of the project is to lower the cost of implementing a stable, reliable,
and resource-efficient surveillance camera system. The Raspberry Pi boasts its
advantage in a low amount of power usage and its customizability, yet is still
equipped with adequate features and performance to conduct image processing.
In this project, the majority of the design will be focused on programming the
functionalities of the surveillance system on the Raspberry Pi.

3

Figure 2: State of the Art

(a) Car Dash Camera [5] (b) Pet Monitor [6]

4 Program Design and Features

The main parts of the surveillance system include video capturing, a finite-state
machine, frame differencing, and human detection. The system is written in
C++, heavily utilizes the OpenCV2 library, and could be compiled and executed
on any machine with C++ and OpenCV (2 and above) installed. As for the
alarm system, curl should also be installed on the computer for remotely sending
a Gmail notification through the Simple Mail Transfer Protocol (SMTP) services
provided by Gmail. Hardware requirements include surveillance cameras that
could be accessed by the OpenCV library, the most common being USB cameras
or Webcams. The computing unit, preferably a Raspberry Pi circuit board,
should be able to support image processing and plug-and-play of the cameras.

4.1 The Mat Class

The cv::Mat class from the OpenCV library can be used to store an array of
values [8] and is commonly used to instantiate Mat objects for storing image
frame pixels. An instantiated Mat object contains a header that stores the
information regarding the starting address of the matrix, and a pointer for
reading and writing values to the matrix. [9] Therefore, each pixel could be
accessed by assigning a pointer to a certain address within the Mat object, which
benefits the counting of pixels during the implementation of frame differencing.
In the project, a Mat object instance is created to store frames captured by the
camera in the form of a matrix.

4

4.2 OpenCV VideoCapture

The program should be launched with at least one camera connected to the host
device. The VideoCapture object will be instantiated to store the camera pipe.
The imShow function will display the frame in a window. An infinite while loop
will continuously update the frame object and display the frame image, gen-
erating a stream of images that mimicks video recording. Since each frame is
separated individually from each other between updates, the frame object could
be used to process detection of movement with the frame differencing algorithm
[10], which will be explained in section 4.4.

The capturing and storing of frames is demonstrated with the code below:

VideoCapture cap(video0);

if (!cap.isOpened())

cout << "Unable to open camera" << endl;

while (1) {

Mat frame;

cap >> frame;

/* Code for state machine */

imshow("Video", frame);

}

4.3 Finite-state Machine

The basic structure of the program will be modeled after a finite-state machine,
in which each of the event listed in the Basic Operation section of the project
prompt will represent a state. The state transition diagram is shown in Figure 3.

Figure 3: State Machine Design for the Surveillance System

Each state will have its own modules, within contains the functions neces-
sary to fully execute each event:

5

• State 0: Idle

In state 0, no action is taken and the embedded device goes into power
saving mode.
The state machine could transition to State 1 when movement detection
is turned on.

• State 1: Movement

In state 1, the state machine will keep scanning for movement using the
implemented frame differencing algorithm. The threshold of movement
could be altered and defines the trigger of state transition. The state ma-
chine will transition to State 2 when movement larger than the defined
threshold is detected. Otherwise, the state machine will stay in State
1. The frame differencing algorithm and the threshold definition will be
explained in section 4.4.

• State 2: Approaching Target

In state 2, the state machine will trigger the functionalities for human
detection for a defined limited amount of time before automatically tran-
sitioning back to State 1 to save computing power. The state machine will
transition to State 3 when a human target is identified. Otherwise, the
state machine will stay in State 2 and attempt to identify human figures
in the picture. Human detection will be explained in section 4.5.

• State 3: Suspicious Target

In state 3, the state machine will draw out the target on the frame as
long as the number of humans identified on the screen is greater than
zero. If the number of targets of frame is equal to zero, then the state
machine would transition back to state 2. Otherwise, the state machine
will stay in state 3. The state machine will trigger the alarm if the state
machine maintains in state 3 for more than the defined limited amount of
time. Once the alarm is triggered, the state machine will send an email
to the designated email address of the user.

• Manual Mode:

The remote owner takes control and the state machine halts. This state
cannot be achieved through state transition and is not integrated into the
state machine.

The code below depicts the structural overview of the state machine:

6

switch (state) {

case 0:

/** Power saving mode */

break;

case 1:

/** Frame differencing algorithm */

// state transition from 1 to 2 and start timer for movement

timeout

if (moved_frame_count > MVNT_THRESHOLD) {

state = 2;

} else {

state = 1;

}

break;

case 2:

/** Human detection algorithm */

state = 2;

// If human is detected then start timer for human detection

timeout

if (human.size() > 0) {

start = time(0);

state = 3;

}

// If current time elapse times out then transition to state 1

else if (time_elapse(start, time(0)) > DIFF_TIMEOUT)

state = 1;

break;

case 3:

/** Human detection algorithm */

if (human.size() > 0) {

/** Drawing human detection */

state = 3;

if (time_elapse(start, time(0)) > HUMAN_TIMEOUT) {

/** Send alert */

}

}

else

state = 2;

break;

}

7

4.4 Frame Differencing

The frame differencing algorithm is implemented with the comparison between
two frame objects. Before entering the while loop, a Mat object is generated to
store the previous frame captured by the camera. Inside the while loop, another
Mat object object is created to store the current frame captured after the pre-
vious frame. Using the operator-overloaded subtraction of the Mat object, the
difference between each individual pixel from the current frame and the previous
frame could be calculated using the minus sign. The pixels from the returned
Mat object will indicate the differences at each pixel position. e.g. if the frame
differencing image is black, then it shows that all the pixels in the current and
previous frame have no difference, and therefore shows 000 as the color.

If the colors between a certain pixel of the current frame and the previous
frame are the same, the difference of the pixels would be zero. Otherwise, the
color difference will be quantified in floating point numbers. The differences of
the pixels wil be stored in another Mat object. After the difference between the
pixels is stored, the previous frame is updated by the current frame, and the
while loop continues to capture the next frame [11].

The code below demonstrates the calculation of frame difference:

Mat prev_frame; // Capture and store previous frame

cap >> prev_frame;

while (1) {

Mat frame;

cap >> frame;

/** Calculate frame difference */

Mat frame_diff = frame - prev_frame;

/** Update previous frame with current frame */

prev_frame = frame.clone();

imshow("Video", frame);

}

Using the matrix provided by the Mat object storing the pixel differences,
a threshold (MVNT THRESHOLD) could be set to indicate the sentivity of
movement detection.

With a for loop and a pointer at the header of the Mat object, the frame
differencing algorithm could traverse through the whole matrix with a pointer
and identify the magnitude of the pixel differences between the frames in the
form of floating numbers. In this case, the floating point numbers for each pixel
will be typecasted to integers so that the integers could be used for movement
identification. In other words, since typcasting a double will truncate the float-
ing points, the pixels with typecasted values greater than 1 would be marked

8

as true and those with typecasted values less than 1 would be marked as false.
If the typecasted value of a certain pixel exceeds 1, the algorithm will in-

crement moved frame count, a variable that keeps track of the total number of
pixels with values greater than 1 in the differenced frame.

After the whole matrix of data from the Mat object is traversed, the moved frame count
variable will be compared to MVNT THRESHOLD for movement detection. If
the number of marked pixels is greater than the threshold, movement in the
frame is considered detected and the state machine will transition its state.

The code below demonstrates the calculation of the difference between pixels
from the current and previous frame:

#define MVNT_THRESHOLD 300

float* pixels = &frame_diff.at<float>(0);

int moved_frame_count = 0;

switch (state) {

case 1:

/* Count moved pixels */

for (unsigned int i = 0; i < 307200; i++)

if ((unsigned int) pixels[i])

moved_frame_count++;

/* State assignment and transition */

state = 1;

if (moved_frame_count > MVNT_THRESHOLD) {

start = time(0);

state = 2;

}

break;

To save computing power and prevent sampling errors caused by camera
glitches that will be mentioned in section 7.1, the number of pixels examined
could be reduced. Instead of traversing through the whole matrix, the for loop
could skip a certain number of pixels just enough to determine movement. For
example, for a camera with a resolution of 640 x 480 resolution, there are 307200
pixels. Instead of processing all 307200 pixels, the for loop could process just
3072 pixels, with each chosen pixel having a distance of 100 pixels from the
next chosen pixel. Note that this approach should not be overdone to retain
accuracy, and that the threshold should also be adjusted to match the original
sensitivity of movement detection.

The code below is an approach that attempts to speed up the pixel-counting
process:

#define MVNT_THRESHOLD 30

9

/* Count moved pixels */

for (unsigned int i = 0; i < 3072; i += 100)

if ((unsigned int) pixels[i])

moved_frame_count++;

4.5 Human Detection

The human detection functionality implemented in the surveillance system uses
the cascading classifiers available from the OpenCV GitHub repository as XML
files. Initially, the XML file defining the numeric values of a human face or body
is loaded into a CascasdeClassifier object.

Depending on the loaded XML file, this technique could be applied to both
facial recognition and human detection [12]. In the case of this project, since the
cameras are expected to be installed on the roof of the factory, the program will
load the full body XML and function as if the camera is attempting to identify
pedestrians.

Using the frame grabbed and retrieved from the camera, the detector com-
pares the templates loaded from the XML file to the frame and identifies pixel
groups in the frame that closely resembles the numeric values from XML file.
The algorithm draws a rectangle around the identified object. Note that the
frame should be translated to black and white before feeding the frame to the
cascade classifier in order for the cascade classifier to generalize colors into gray
scales and avoid having to recognize various colors.

/* Initial setup for cascade classifier */

CascadeClassifier detectorBody;

detectorBody.load("haarcascade_fullbody.xml");

/* Convert the picture to black and white */

cvtColor(frame, gray_frame, CV_BGR2GRAY);

detectorBody.detectMultiScale(frame, human, 1.1, 2, 0 | 1, Size(40, 70),

Size(80, 300));

Another candidate for implementating human detection is using the OpenCV
Histogram of Oriented Gradients (HOG). However, due to accuracy and perfor-
mance disadvantages in the default detectors, the cascading classifier technique
is chosen over HOG [13].

4.6 Timing

Timing plays a significant role in the project since timing conditions are used
in the system to trigger state transitions. Assume that a human target is iden-
tified for a certain period amount of time that, instead of being recognized as

10

a bypassing pedestrian, would in fact be considered suspicious. This time limit
could then be defined as the timeout for state transition.

Similarly, we can apply the same assumption on voids of human detection.
Whenever the human detection algorithm fails to identify humans in the frame
for longer than a certain amount of time, it can be assumed as if the movement
that resulted in the enabling of human detection is in fact not caused by humans.
Therefore, after this amount of time is achieved, it is convincing enough for the
algorithm to give up on human detection and fall back to frame differencing.

Below is a helper function used throughout the program for calculating time
elapses.

/* function for time elapse */

double time_elapse(time_t start, time_t end) {

return (double) end - (double) start;

}

The code below shows the basic logic of how timing triggers a certain action,
and in the case of this project, timing triggers state transition.

time_t start;

// if the current time and the start time differs more than TIMEOUT then

action

if (time_elapse(start, time(0)) > TIMEOUT) {

/** Action */

}

Throughout the project, we can see that timing is used in the cases men-
tioned above.

time_t start;

while (1) {

switch (state) {

case 1:

/** Frame Differencing */

/* state transition from 1 to 2 and start timer for movement

timeout */

if (moved_frame_count > MVNT_THRESHOLD) {

start = time(0);

state = 2;

} else {

state = 1;

}

break;

case 2:

/** Human Detection */

state = 2;

11

// If human is detected then start timer for human detection

timeout

if (human.size() > 0) {

start = time(0);

state = 3;

}

// If current time elapse times out then transition back to

state 1

else if (time_elapse(start, time(0)) > DIFF_TIMEOUT)

state = 1;

break;

/** Drawing human detection */

case 3:

if (human.size() > 0) {

/** Draw human */

state = 3;

// If elapsed time since start is greater than the defined

timeout, send alert message

if (time_elapse(start, time(0)) > HUMAN_TIMEOUT) {

/** Send alert message! */

}

}

else

state = 2;

break;

}

}

4.7 Sending Email Notification

In the project, the alarm system does not contain a physical alarm bell. The
alarm function will trigger curl on the computer to send an email message via
the Gmail SMTP service.

The SMTP service with curl is transplanted from Daniel Stenberg’s libcurl
example [14] and integrated into the alert function as the default alarm notifi-
cation mechanism for the surveillance system. Figure 4 shows the preview of
the email notifications received when the alarm is triggered.

5 Current Product

5.1 Installation

The program is distributed with the main.cpp file, the cascade classifier XML
file, and a makefile. To build the system from the source code, the operating

12

Figure 4: Email Notification Preview

(a) Alert Email Sent to Inbox (b) Alert Message

system will require OpenCV2, the g++ compiler, and curl installed. By typing
in the make command into the UNIX terminal, the compiler will generate a
binary file.

5.2 Display Interface

Once the program is built, the user will be able to launch the surveillance pro-
gram by executing the compiled binary file. The program will begin displaying
the frames captured from the camera. The program will display the current
state of the surveillance system on the upper left corner of the frame. Figure 5
shows the program interface during frame differencing.

13

Figure 5: User Interface of the Surveillance System during Frame Differencing

(a) Idle State (b) Movement Detection State

Figure 6 shows the program interface during human detection. The elapsed
time and current status of the program is also elaborated on the console in the
background.

6 Results and Analysis

6.1 Performance

The Raspberry Pi is able to handle frame updating at around 10 frames per
second. The program sees no significant decrease in performance when the frame
differencing algorithm is implemented. Therefore, the performance of the frame
differencing algorithm does not impact the overall performance on updating the
frames. However, when the human detection mechanism is launched, the frame
refreshing frequency decreases to around 3 frames per second, indicating that
with the use of the cascade classifiers, the human detection algorithm requires
extensive CPU computing power.

Another candidate for human detection is HOG, mentioned in section 4.5.
HOG runs at around 0.5 frames per second on the Raspberry Pi, which is even
slower than the cascade classifier technique. In addition, human detection using
HOG lags much more than the cascased classifier technique.

Attempts on multithreading to increase performance of the cascade classifier
technique for human detection have been tested with both OpenMP and p-
threads. Yet, the effect of implementation did not see a noticeable increase in
the frame rate since the semaphores in the multithreading process prevent the
frames from simultaneously showing up using the imshow function.

14

Figure 6: User Interface during the Human Detection State

(a) Human Detected (b) Timeout and Sending Alert

Another attempt for performance improvement was experimenting on skip-
ping every other frames in order to prevent the frames from lagging behind as
the process load builds up with time. The attempt did not improve perfor-
mance since the capturing of the next new frame is achieved only when the
human detector is done processing the current frame.

6.2 Cost Analysis

The table below depicts the cost of the physical components of the project. The
cost of each individual cameras, the micro SD card, and the alarm system is
based on an estimated current retail price on Amazon.com. For future develop-
ment of the system, a 128 GB SanDisk is chosen as the sample to incorporate
recording and frame storing functionalities. The price of each individual camera
is obtained by searching for surveillance cameras, and the price for the alarm is
estimated using the manufacturing costs of fire alarms. The total estimate of
budget cost to fully implement a reliable surveillance system would be around
286.90 USD, which is significantly less than the average of 1,339 USD for a
CCTV system from the market.

15

Cost Entry Units Total Cost (USD)

Raspberry Pi 1 $ 35.00
Cameras 8 $ 207.92
Micro SD Card 1 $ 19.99
Alarm System 1 $ 23.99

Total $ 286.90

Table 1: Items Cost

6.3 Engineering Cost

The design and coding of the current program are not included as the accounting
cost of the surveillance system. Installing the complete surveillance system will
require time to install 8 cameras, install the program on a Raspberry Pi, and
secure the communication between the 8 cameras and the Raspberry Pi with
either wired or wireless options. With one technician at the scene, this should
all take around 4 to 5 hours depending on the magnitude of the factory.

6.4 Varying Cost

Other varying costs include monthly fees for internet connection, and the to-
tal cost varies depending on the time duration of the surveillance system on
duty. Maintenance costs of the program will differ according to how critical the
software vulnerability or hardware damage is.

7 Future Prospects

7.1 Improvements

Below is a list of improvements identified that could enhance user satisfiability
of the surveillance system:

• Performance of Human Detection

As mentioned in the performance section 6.1, it is seen that when human
detection is launched, the frame rate significantly decreases to 3 frames per
second. The surveillance system will require a more efficient approach of
human detection to be able to support higher frame resolutions, meanwhile
able to decrease the time delay caused by comparison with the cascading
classifier XMLs.

Hypothetical approaches of solving performance issues is to conduct paral-
lel programming with multiple Raspberry Pi’s, yet as mentioned in section
6.1, having multiple threads did not increase the frame rate, and there-
fore the hypothesis is less probable. Another approach is to outsource
the computing portion to personal computers or cloud computing servers,

16

yet this approach requires stable and reliable internet connection to avoid
being bottlenecked by slow internet speed or not being able to retrieve
computing results from the cloud server and cause the program to crash.

• Camera Glitches

Camera glitches occassionally occur and could cause the frame differencing
algorithm to accidentally trigger human detection.

An approach to prevent the frame corruption problem from influencing
the frame differencing algorith is to simply remove and skip the corrupted
frame altogether. This could be done by detecting the integrity of the
frame before feeding the frame to the frame differencing algorithm.

However if removing corrupted frames is not available for implementa-
tion, another way to alleviate the errors of processing corrupted images is
by only testing sample pixels instead of testing every single pixel in the
Mat object, as mentioned in section 4.4. Although this solution cannot
completely solve the frame corruption problem, the solution increases the
possibility to neglect a certain group of pixels in the frame to influence
the number of pixels marked as moved.

• Multiple Cameras

Originally, the prompt stated that there should be 8 cameras around the
factory. This project, however, has not shifted its focus to having multi-
ple instances of camera active simultaneously. There were versions where
multi-threading and process forking came in handy as solutions for this
problem. Yet for some vendors, there exists some unresolved conflicts be-
tween two and more cameras. This project focuses to have one Raspberry
Pi solely deal with one camera, as handling the load for image processing
with 8 cameras would be far beyond the demand of one Raspberry Pi.

7.2 Viable Features

• Container for the Frame Window

The imshow function is provided by the OpenCV library. The function will
launch a window on the graphics user interface with the frame captured
from the camera. Since the window is frequently opened and closed with
each iteration of the while loop, the program will seem as if the frames
are updated.

However, since the windows are continuously updated, the window cannot
be closed by clicking on the close button like other programs. Whenever
the window receives the kill signal, a new window with a new frame is
generated by the while loop. So far, the only way provided by many
OpenCV programs is detecting whether the escape key (Esc) is pressed.
The surveillance system anticipates a more user-friendly interface that is
responsive to mouse clicks.

17

• Recording Functionality

As mentioned in section 6.2, users can utilize the additional storage space
on the Raspberry Pi to store recordings of the frames for future reference
and evidence tracking. This could be a promising feature to be incorpo-
rated in the future.

8 Summary

This project regards the implementation of a surveillance system on a Raspberry
Pi. The major focus of the project has been on the smoothness of transition
between the states for the state machine. Currently, the program user interface
could clearly display the status of the camera by printing the state on the
screen without any state transition failures. This is a significant step in the
development of the program in that the foundation of the project - the state
machine - does not crash the whole system.

After the state machine was developed, the focus shifts to efficient ways of
communicating the user with alerts when the alarm system has been triggered.
With the implementation of curl into the system, the program is able to send
an email whenever the trigger has been set off. The user would be notified
nevertheless that there has been an incident at the factory and should visit the
scene for details.

This project has its flaws and points of improvements in the future. How-
ever, the program has so far demonstrated that it is possible to combine frame
differencing, human detection, timing, and alert sending into one state machine
effectively and reliably.

9 References

References

[1] HomeAdvisor, ”2019 Security Camera Installation Costs — CCTV
Surveillance System Prices,” HomeAdvisor, 2019. [Online]. Available:
https://www.homeadvisor.com/cost/safety-and-security/install-

a-surveillance-camera/. [Accessed: May 9, 2019].

[2] Anthony Alaniz, ”The Best Dash Cams for Your Next Road Trip,” Popular
Mechanics, 2019. [Online]. Available: https://www.popularmechanics.

com/cars/how-to/g9/5-dash-cams-tested/. [Accessed: May 9, 2019].

[3] Safety.com, ”The Best Pet Cameras,” Safety.com, 2019. [Online]. Available:
https://www.safety.com/pet-monitors/. [Accessed: May 9, 2019].

[4] OSRAM (2019). https://media.osram.info/im/img/osram-dam-

1457779/c,x,0,y,764,w,4800,h,2664/s,x,1260,y,0/727326_OS_

awareness_safety_picture_camera.jpg. [image] Available at: https:

18

//www.osram.com/os/applications/surveillance-cctv/index.jsp.
[Accessed: May 11, 2019].

[5] https://images-na.ssl-images-amazon.com/images/I/61BpozoUvSL.

_AC_UL200_SR200,200_.jpg. (2019). [image]. [Accessed: May 11, 2019]

[6] https://m.media-amazon.com/images/I/61hTOr-fwnL._AC_UL436_

.jpg. (2019). [image]. [Accessed: May 11, 2019]

[7] Raspberry Pi Foundation, ”Featured Products,” Raspberry Pi Foundation,
2019. [Online]. Available: https://www.raspberrypi.org/products/.
[Accessed: May 9, 2019].

[8] OpenCV, ”cv::Mat Class Reference,” OpenCV, 2015. [Online]. Avail-
able: https://docs.opencv.org/3.0.0/d3/d63/classcv_1_1Mat.html.
[Accessed: May 9, 2019].

[9] OpenCV, ”Mat - The Basic Image Container,” OpenCV, 2019. [Online].
Available: https://docs.opencv.org/2.4/doc/tutorials/core/mat_

the_basic_image_container/mat_the_basic_image_container.html.
[Accessed: May 9, 2019].

[10] OpenCV, ”How to open usb cam instead of webcam in VideoCapture?,”
OpenCV, 2018. [Online]. Available: http://answers.opencv.org/

question/188821/how-to-open-usb-cam-instead-of-webcam-in-

videocapture/. [Accessed: May 9, 2019].

[11] Stack Overflow, ”How to find the differences between frames
using OpenCV?,” Stack Overflow, 2014. [Online]. Available:
https://stackoverflow.com/questions/9998195/how-to-find-

the-differences-between-frames-using-opencv. [Accessed: May 10,
2019].

[12] Funvision, ”Fast Opencv people pedestrian detection Tuto-
rial,” funvision.blogspot.com, Mar. 11, 2016. [Online]. Available:
https://funvision.blogspot.com/2016/03/opencv-31-people-

detection-at-13-fps-by.html. [Accessed: May 10, 2019].

[13] Madhawa Vidanapathirana. ”Real-time Human Detection in
Computer Vision - Part 1,” Medium, 2018. [Online]. Available:
https://medium.com/@madhawavidanapathirana/https-medium-com-

madhawavidanapathirana-real-time-human-detection-in-computer-

vision-part-1-2acb851f4e55. [Accessed: May 10, 2019].

[14] Daniel Stenberg. ”libcurl example - smtp-mail.c,” curl, 2017. [On-
line]. Available: https://curl.haxx.se/libcurl/c/smtp-mail.html.
[Accessed: May 10, 2019].

19

